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Abstract. Some questions arising when various modifications are made to the singular manifold
method are considered. The solutions are shown to lie outside the framework of the singular
analysis. The approach is illustrated by a number of examples with ordinary differential equations.
Further perspectives and the question of optimization of the calculations are also discussed.

1. Introduction

Although the singular manifold method or WTC approach [1] was introduced as a natural
generalization of the ordinary Painlevé test to partial differential equations (PDEs) in the
context of the necessary condition for their integrability [2] (more precisely, the connection
between nonlinear PDEs associated with the linear Gel’fand–Levitan–Marchenko integral
equation and the Painlevé property of their scaling-type self-similar solutions), nevertheless
already in [1] the overwhelming majority of the results concern the use of the related functional
series for deriving various relations and structures, such as the Bäcklund transformations and
Lax pairs, for the equations under consideration rather than the Painlevé property itself. In
the succeeding two decades several works refining the singular analysis have appeared (see,
e.g., [3–6]), however, as before the singular manifold approach owes its popularity mainly to
applications of those truncated expansions and the simplicity of their construction.

Part of the original theory does not demand any assumptions on the type of singularities and
can be successfully applied for ‘non-integrable’ partial differential equations [7] and ordinary
differential equations (ODEs). Moreover, to expand its practicality both for integrable and
non-integrable cases a number of modifications have been made. Among them are the use
of Weierstrass or elliptic functions [8], the Painlevé–Darboux transformations [9], ‘double
singular manifold methods’ [10–12], and various ways for introducing judiciously chosen
terms [13, 14]. Some of those modifications are compatible with the Painlevé analysis as
shown in [15] and others simply break down its basic postulates, but all turn out to be effective
in reality.

The main goal of this paper is to show that all the above approaches are closely related
and are of the same unified algebraic nature and to point how these ideas can be developed
further.
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First of all, we need to point out that the association off (x, t) with singularities in the
truncated or infinite expansions

u(x, t) =
m∑

i=−p
wi(x, t) · f i(x, t) p ∈ N m = 0,+∞

for solutions alone does not provide reason enough to equate coefficients at its powers to zero
after substitution into a governing equation. For it to be correct to do so for such a series, it
is necessary that the combinations of derivatives off arising as factors at its powers should
have a non-zero first term together with other coefficients zero up to some order in the related
Taylor expansions. For infinite series this demand leads to ordinary Laurent series. On the
other hand, the above expansions must be valid over the whole domain for our purposes. The
answer becomes especially clear by taking into account the so-called invariant formalism [5]

u(x, t) =
m∑
i=p

wi(x, t) · V i(x, t) p ∈ N m = 0,−∞ (1)

where in terms of the functionf

V = fx

f
− 1

2

(
fxx

fx

)
such that

Vx = −V 2 − 1
2S (2)

Vt = CV 2 − CxV + 1
2(CS + Sxx) (3)

S = S(x, t) C = C(x, t)
and

St +Cxxx + 2SCx +CSx = 0. (4)

In such a manner the functionV depends on an additional arbitrary parameter in comparison
with C, S andwi as a consequence. In other words, the form of such series and the fact that
the singularities are movable turn out to be more essential here. All the aforesaid is important
for our considerations.

This paper is organized as follows. In section 2 the approach allowing one to find both
singular manifold equations and additional constraints to the corresponding singular function
is proposed, and its realizations are discussed. The examples with one and two singular
manifolds for some nonlinear ODEs from physical applications are presented in sections 3
and 4, respectively. Their computational aspects are illustrated in detail. In section 5 we
discuss how the main ideas can be developed further, as well as the common features of the
WTC approach and the so-called method of generalized separation of variables. In appendices
A and B some bulk mathematical treatments with technical details are given for the above-
mentioned examples.

2. Additional constraints in the singular manifold method

In a number of cases there can also exist an additional constraint to a singular manifold (the
functionV ), or, in other words, the above free parameter inV appears to be bound. In this
section we will show why such constraints may arise and how this problem can be solved
rigorously.
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First, let us presume that we have a differential equation and the generalized Laurent
series (1) for its general solution, i.e.m = −∞ and there arek − 1 arbitrary functions in the
expansion besidesV , wherek is the order of this equation. Also, assume that we consider
some of its reductions. What form does the Laurent expansion take for it? Obviously, for the
infinite series to pick out the solutions corresponding to the reduction, it is necessary to impose
some constraints on the arbitrary functions. Two different situations should be distinguished,
because such constraints may or may not affect the singular manifold functionV (it is one
more arbitrary function). In terms of truncated series and singular manifold equations toS

andC, it means that aside from reductions corresponding directly to the reductions of the
singular manifold equation, there are also others demanding a linkage between the functions
V andS,C. In the first case the traditional WTC algorithm is fully suitable. Otherwise, in the
general case, we are not entitled to equate the coefficients after substitution. Therefore, only
expressions for particular solutions can be constructed in such a way. However, the relations
associated with the truncated expansion of the original system can be restored if the form of this
expansion is known. And it is easy to see that the principal parts of the Laurent expansions for
the original equation and for reductions are coincident if the arbitrary functions (resonances)
are placed above them. However, for this another technique should already be applied.

The next case is expansions with several singular functions. In the works [10, 11] Estévez
and co-workers attempted to introduce such truncated expansions with two manifolds for
integrable equations with different singular branches. In so doing, to apply the traditional
method and cancel terms of the formf −n1

1 f
−n2
2 (n1, n2 ∈ N), the validity of the linkage

1

f1f2
= a(x, t)

f1
+
b(x, t)

f2

was assumed. Soon it was demonstrated that for cases with two opposite branches the last
problem could be solved by reducing to a one-manifold case via the new more convenient
notation [12]. However, since a second manifold in such truncated expansions can present
the rest of the one-manifold infinite series [15], it is necessary to be able to use the above
expansion of any type and form perceiving that the case at hand is constrained manifolds.

Next, the approach for such cases will be presented in detail. In so doing, we restrict
ourselves to cases when the expressions under consideration are polynomial at least with
respect toV . Although the theory itself is valid in the general case, however, techniques for
systems of univariate and multivariate polynomials will be essential for our computations.
While the overwhelming majority of real nonlinear equations from applications lead exactly
to such cases. Also, ordinary differential equations will be considered for simplicity. All
the following are immediately generalized to cases with several independent variables, but a
greater number of relations should be considered in so doing.

We will start with the first case of one constrained singular functionV . Assume that there
is some ODE

E(x, u, ux, . . . , ukx) = 0 k ∈ N (5)

of the above type, and some singular manifold equation

M(x, S, Sx, . . .) = 0 (6)

with the additional constraint toV

G(V ; x, S, Sx, . . .) = 0

associated with it and the truncated expansion

u = T (V ; x, S, Sx, . . . , Slx) = 0 l ∈ N. (7)
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Then after substitution of this expansion into equation (5) it can be factored as

E = A(V ; x, S, Sx, . . .)G(V ; x, S, Sx, . . .) = 0. (8)

Obviously, the only constraint can be imposed to one functionV , and the condition of its
invariance [16] or compatibility with the differential equations toV (2) andS (6) is as follows:

d

dx
G = ∂G

∂x
+ Vx

∂G

∂V
+ Sx

∂G

∂S
+ · · · = L(V ; x, S, Sx, . . .)G (9)

whereL has no singularities atG = 0. (Simply speaking, ifG = 0 for somex = x0 then
G = 0 for anyx.) However, in view of (9) all the total derivatives ofE with respect tox are
also factorizable as before, in particular,

d

dx
E =

(
d

dx
A +AL

)
G(V ; x, S, Sx, . . .) = 0. (10)

Conversely, if one has

E = AG
d

dx
E = B G

with some polynomialsA, B andG in V , then because

d

dx
E = dA

dx
G +A

dG

dx

we have

d

dx
G = (B − dA/dx)

A
G.

So, ifA dividesB − dA/dx or does not divideG, thenG satisfies the invariant condition (9).
Hence our problem is reduced to finding some common divisor for (8) and (10) as well as to

determine the appropriate differential equation (6) forS needed for the existence of the former.
There are a number of methods in the theory of polynomial systems for solving this problem.
Among them are the Gröbner bases technique [17], Wu’s zero-structure theorem [18], etc. In
the frameworks of these approaches an initial system can be brought to a triangular form, such
thatV will be eliminated from one or several final equations, and the equations forS with its
derivatives and the common divisor sought will be distinguished as a result. Alternatively,S

and its derivatives can be simply treated as the coefficients of two univariate polynomials with
respect toV , and the theorem on a resultant [19] can be applied to determine the condition
for the existence of their common zeros. After that the related common divisor could already
be easily calculated by means of one of the standard techniques. All these methods have their
own advantages and disadvantages. For instance, in the simplest situations a resultant leads
directly to the equation sought forS within one step. However, practically such situations
are limited to ODEs and cases when no further evaluations are needed (see below). Thus, for
PDEs already three equationsE = 0, ∂E/∂x = 0 and∂E/∂t = 0 should be investigated, and
its generalization will be wasteful of computer time and memory and already gives rise to a
set of equations forS. And in the latter case, when a resultant is not the final expression to be
found, its use may not be the most effective and short way to achieve a result. In such cases the
Gröbner bases technique appears to be considerably more effective. The approach itself is very
powerful and flexible. It allows one to exercise control over every step to discard superfluous
branches according to possible extra conditions or properties of variables. At the present time
there are many modifications and optimization algorithms, and almost every modern computer
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algebra system contains an implementation of it. (A fine introduction to the method with many
references can be found in [20, 21]. See also [22] about its application to a number of problems
with multivariate polynomials and the implementation used in REDUCE.)

Before proceeding further, it is necessary to underline that in the general case the resulting
condition forS (it is an ODE of orderk + l + 1) constitutes some differential prolongation
of the singular manifold equation sought. Or, in other words, the singular manifold equation
of interest (6) may appear to be just the so-called intermediate integral [23] for it. Really,
there are many equations with the same truncated expansion (7) and such that the ODE under
consideration (5) is their reduction of the above-mentioned type. And all their singular manifold
functions must satisfy that condition. While these singular manifold equations in the framework
of the WTC approach are derived from some overdetermined sets of differential equations and
may, in principle, in view of the forms of (5) and (7), be of any order up tok + l + 1 inclusive.

Now let us consider series with several manifolds. In this case the generalizations of
relations (8)–(10) for a one-manifold case are as follows (m 6 n):

d

dx
Gi =

m∑
j=1

Lij (V1, . . . , Vn; x, S, Sx, . . .)Gj i = 1, m (11)

di

dxi
E =

m∑
j=1

Aij (V1, . . . , Vn; x, S, Sx, . . .) Fj = 0 i = 0,+∞. (12)

Also, it is not hard to investigate, respectively, the firstm + 1 of them (12) via, for example,
the Gr̈obner basis technique and construct some suitable generators{G1, . . . , Gm} for (12)
together with the related equation forS. Such generators alone, however, are not unique, and
to choose them correctly or bring [24] them to such a form that the relations (11) are also
fulfilled will already not be so easy. The problem, however, is analogous to the previous one
if we consider the equation after substitution of then-manifold expansion as the univariate
polynomial with respect to someV1,

E1 = A1(V1, . . . , Vn; x, S, Sx, . . .)G1(V1, . . . , Vn; x, S, Sx, . . .) = 0

with the parametersVi (i 6= 1), x, S, Sx , . . . . All the aforementioned is valid in this case.
Although the theorem on a resultant is not efficient here from the computational viewpoint (in
particular, it does not allow one to throw away trivial solutions likeVi = Vj ) and leads to a
huge algebra in contrast to the Gröbner basis method, it postulates that the resulting condition
for the parameters exists and is presented by one expression, say

E2(V2, . . . , Vn; x, S, Sx, . . .) = 0.

In turn this equation can be treated as the polynomial inV2 and

E2 = A2(V2, . . . , Vn; x, S, Sx, . . .)G2(V2, . . . , Vn; x, S, Sx, . . .) = 0

again and so on. This process can be continued up tom + 1,

Em+1(Vm+1, . . . , Vn; x, S, Sx, . . .) = 0. (13)

If m < n there will be them constraints to then functions {V1, . . . , Vn}, the functions
{Vm+1, . . . , Vn} remain ‘free’ with the arbitrary parameters due to (2), and we should further
equate to zero the related coefficients at their products in (13). The casem = n

En+1(x, S1, . . . , Sn, . . .) = 0

returns us to the problem studied previously. The relations (9) constructed in this manner are
verified as before, and the system (11) takes the triangular form in so doing.
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3. A singular manifold with a constraint. Some examples

Below the application for one-manifold cases of the theory and the approach developed in the
previous section is demonstrated for some reductions of the KdV and MKdV equations. The
use of a resultant is reasonable and effective in these cases.

As is well known, the KdV and MKdV equations are closely allied to one another within
the framework of the singular manifold method. To be precise, the singular manifold equation

C − S − λ = 0 λ = constant

and the truncated expansion

u(x, t) = −2V 2 + 1
6(C − 4S) = Vx − V 2 + 1

6λ

are related to the KdV equation

ut + 6uux + uxxx = 0.

And in so doing, equations (3) and (4) take the form of the MKdV equation and the KdV one
again, namely

Vt + λVx − 6V 2Vx + Vxxx = 0

St + λSx + 3SSx + Sxxx = 0.

Naturally, one could expect that the use of the singular manifold method to their reductions
could give rise to analogous relations and maps. Paradoxical as it may seem, it only leads to
particular solutions. To overcome this in [13] the authors proposed simply to pick up suitable
terms, and in [14] an ansatz was applied with the same purpose. However, the problem can be
solved easily and straightforwardly.

Example 1. Consider the following travelling wave reduction (z = x − ct , Vz = Vx =
−V 2 − S/2):

u2
z − u4 − cu2 + bu + a = 0 a, b, c = constant (14)

of the MKdV twice integrated, one time after multiplication byuz. Substituting the truncated
‘expansion’

u = ±V (15)

into (14), we have the equation

E = 4(S − c)V 2 ± 4bV + (4a + S2) = 0.

The appropriate resultant is of the form

Res

(
E,

d

dz
E

)
= 1

16(S − c)
[
S4 − 4cS3 + 4(c2 + 2a)S2

+8(b2 − 2ac)S + 16a2
][
S2
z + S3− cS2 + 4aS − (4ac + b2)

]
.

Ignoring the first trivial factors, one has

S2
z + S3− cS2 + 4aS − (4ac + b2) = 0. (16)

Provided thatS satisfies this relation,E and dE/dz have the following common divisor:

G = 2(S − c)V − Sz − b.
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(E can be rewritten in the equivalent form

E =
(

2Sz +G

S − c
)
G

in view of (16).) In so doing, the condition (9) is as follows:

d

dz
G = − (2b +G)

2(S − c)G.

Finally, finding the connection betweenV andS from the relationG = 0, one arrives at the
following map:

u = ± Sz + b

2(S − c)
between (14) and the analogous reduction of the KdV (16) as might be expected.

Example 2. Next consider the analogous travelling wave (z = x − ct) KdV reduction after
one time integration,

uzz + 6u2 − cu + b = 0 b, c = constant. (17)

With the substitution

u = −V 2 + 1
12(c − 4S) (18)

one obtains, respectively,

E = 24SzV − 8Szz + 4S2 + 24b − c2 (19)

Res

(
E,

d

dz
E

)
= 1

576Sz
[−192SzzzSz + 128S2

zz + 8(c2 − 24b − 4S2)Szz

−96S2
z S − 16S4 + 8(c2 − 24b2)S2 − 576b2 + 48bc2 − c4

] = 0. (20)

It is clear that (19) and the common divisorG sought are identical,G = E. In this case,
since the equation toS is of third order, we should investigate its intermediate integrals. In
the general case finding all such integrals for a differential equation is a complicated enough
problem. However, it can be fully solved algorithmically for ODEs and the above-mentioned
integrals of the polynomial type [25]. (In reality, a polynomial with respect to only the highest
derivatives is enough frequently.) Here, for our purposes we can restrict ourselves to the even
more special type

Szz = F(Sz, S, z). (21)

In view of the condition forS from (20) the determining equation forF is of the form

192
(
SzFFSz + S2

z FS + SzFz
)− 128F 2 + 8(4S2 + 24b − c2)F

+96SS2
z + 16S4 + 8(24b − c2)S2 + 576b2 − 48bc2 + c4 = 0

whence, taking into account the possible dominant terms withSzFFSz , S
2
z FS , F

2 andSS2
z , it

immediately follows that forF polynomial inSz,

F = f2(S, z)S
2
z + f1(S, z)Sz + f0(S, z).
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After that, equating to zero the coefficients at the powers ofSz, one arrives at a system forf0,
f1 andf2,

3f0S + 4f 2
0 = 0

3f1S + 5f0f1 + 3f0x = 0

c2f0 − 8f 2
1 − 12S − 24bf0 − 24f2S − 24f1z − 4(4f2 + S2)f0 = 0

(24b − c2)f1 + 24f2z − 4(2f2 − S2)f1 = 0

(24b − c2 + 16f2 + 4S2)(24b − c2 − 8f2 + 4S2) = 0.

These equations can be further simplified [26, 27] and reduce to the following:

f0 = 1
16(c

2 − 24b − 4S2)

f1 = 0

f2S = − 4
3f

2
2

f2x = 0

so that (21) takes the form

Szz −
3S2

z

4(S + ϕ)
+
S2

4
+

24b − c2

16
= 0 ϕ = constant. (22)

In particular, atϕ→∞ in (22) one has the equation analogous to (17)

Szz + 1
4S

24 + 3
2b − c2 = 0 (23)

and the map between equations (17) and (23)

u = −
(
c2 − 24b − 4S2

16Sz

)2

+
(c − 4S)

12

as a consequence of taking into account (18), (19) and (23).

Example 3. As the final example, chose the popularPII equation

vzz − 2v3− zv + a = 0 a = constant (24)

corresponding to one self-similar reduction

u = 1

(3t)1/3
v(z)

z = x

(3t)1/3

(25)

(one time integrated) of the MKdV [28, 29]

ut − 6u2ux + uxxx = 0.

The equationVx = −V 2 − S/2 conserves its type so thatVz = −V 2 − S/2 for

V → 1

(3t)1/3
V (z)

S → 1

(3t)2/3
S(z)

(26)
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and in view of (15)

E = ±2(S − z)V ∓ Sz + 2a (27)

so that the resultant is as follows:

Res

(
E,

d

dz
E

)
= 1

4(S − z)
[
2(S − z)Szz − S2

z + 2Sz + 2S3− 4zS2 + 2z2S + 4a(a ∓ 1)
]
.

It is easy to verify that the related equation toS

2(S − z)Szz − S2
z + 2Sz + 2S3− 4zS2 + 2z2S + 4a(a ∓ 1) = 0 (28)

is the first integral of the associated self-similar reduction (equations (25) and (26))

Szzz + 3SSz − zS − 2S = 0

of the KdV. In this case the common divisorG for E and dE/dz is E (27) itself, so that (9)
is satisfied automatically. As a result, we have the map between two associated reductions of
the MKdV (24) and KdV (28) [30],

u = −2a ± Sz
2(S − z) . (29)

This relation can be used to derived the mapping of (24) into itself as well. Really, the
KdV and MKdV equations are linked via the Miura transformation [31]

S = 2(u′x − u′2) (30)

such that

St + 3SSx + Sxxx = 2

(
−2u′ +

∂

∂x

) (
u′t − 6u′2u′x + u′xxx

)
i.e. the MKdV equation is the intermediate integral for the equation obtained after the
substitution. The transformation (30) again conserves the type for the above similarity, and
proceeding for the intermediate integral after the substitution of (30) into (28) in the same
manner as in the last example, one obtains

v′zz − 2v′3− zv′ + a′ = 0 a′ ∓ a + 1= 0. (31)

(One could use the form of the differential operator associated with the Miura transformation
to simplify the calculations.) And from (29) and (30) one has finally

v = −v′ ∓ a ± a′
2v′z − 2v′2 − z .

This auto-transformation from (31) to (24) was derived for thePII equation in the work [32].

4. Expansions with several constrained manifolds. Some examples

In this section some examples with two-manifold truncated series are demonstrated. In so
doing, such manifolds may correspond to various singular branches. In contrast to the use of
a resultant, the Gröbner basis technique is highly effective for the investigation of multivariate
polynomials in this case and gives rise to the expressions sought within one or two steps.
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Example 4. We will consider the ODE

cux − uxx + 2u3 + bu + a = 0 a, b, c = constant (32)

corresponding (x = y + ct) to the following equation [33]:

ut − uyy + 2u3 + bu + a = 0 (33)

and show that some interesting results can be obtained for it.
Equation (32) has two opposite singular branches. Let us consider the following truncated

expansion:

u = V1− V2 +w(x). (34)

In other words, one assumes that the infinite series could be presented in that manner. Therewith
the first manifold functionV1 is associated with the principal part as usual, while the second
one corresponds to the rest of the Laurent series, has no singularity on the same manifold, and
could in turn be expanded into terms ofV1,

V2 = w0(x) +w1(x)V
−1
1 + · · · (35)

or vice versa and

V1 = W0(x) +W1(x)V
−1
2 + · · · (36)

respectively.
Inserting (34) into (32), one has

E = −6V 2
1 V2 + (6w − c)V 2

1 + 6V1V
2
2 − 12wV1V2 + (b − S− − S+ + 6w2)V1

+(6w + c)V 2
2 + (S+ − S− − b − 6w2)V2

+S−x − wxx + cwx + a + bw − cS− + 2w3 = 0 (37)

and as a consequence

d

dx
E = 12V 3

1 V2 + 2(c − 6w)V 3
1 + 12wV 2

1 V2 + (6wx − b − 2S− + 4S+ − 6w2)V 2
1

−12V1V
3
2 + 12wV1V

2
2 + 12(S− − wx)V1V2

+(−S−x − S+
x + 12wwx + cS− + cS+ − 12S−w)V1

−2(c + 6w)V 3
2 + (6wx + b − 2S− − 4S+ + 6w2)V 2

2

+(S+
x − S−x − 12wwx + cS− − cS+ + 12S−w)V2 + S−xx − cS−x

−wxxx + cwxx + bwx + 6w2wx − bS− + 2S−S+ − 6S−w2 = 0 (38)

where

S− = S1− S2 S+ = S1 + S2. (39)

Although constraints likeH(V1,2; x, S1, S2, . . .) = 0 are not allowed here, we cannot yet
equate coefficients at the various powersV1,V2 and their products to zero to obtain the relations
for S1 andS2, because one admits some linkage betweenV1 andV2. Or, in other words,V2

depends explicitly onV1 and can be expressed in terms of it and vice versa. From this point
of view, both equations (37) and (38) are of the type(

+∞∑
i=1

a
pr2
i V −ir2

)
V pr1 +

(
+∞∑
i=0

a
p−1,r2
i V −ir2

)
V p−1
r1

+ · · · +
+∞∑
i=0

a
0r2
i V −ir2 = 0

p = 2, 3 (r1, r2) = (1, 2), (2, 1)
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a
pr1,2
i = apr1,2i (x, S1, S2, . . .)

such thatapri are unknown as yet, and the above-mentioned procedure is impossible. We
can, however, reduce our system via the Gröbner basis technique to another form which is
equivalent but such that at least one equation will be a univariate polynomial with respect to
V1 or V2, or it will at least be of the form

b (x, S1, S2, . . .) V
p
r + · · · = 0 p ∈ N r ∈ {1, 2}

so thatb (x, S1, S2, . . .) could be rigorously set to zero.
Return to the system (37), (38) and construct its first reduction. Taking into account (37)

with the highest productV 2
1 V2 to eliminate the terms withV 3

1 V2 andV 2
1 V2 from (38), one has

the following equation:

(18wx + 3b + c2 − 6cw − 12S− + 6S+ + 18w2)V 2
1

+12(cw − 3wx + 2S−)V1V2 + (3S−x − 3S+
x − 6wxx + 6cwx + 36wwx

+6a − bc + 6bw − 2cS− + 4cS+ − 6cw2 − 36S−w + 12w3)V1

+(18wx − 3b − c2 − 6cw − 12S− − 6S+ − 18w2)V 2
2

+(3S−x + 3S+
x − 6wxx + 6cwx − 36wwx + 6a + bc + 6bw − 2cS− − 4cS+

+6cw2 + 36S−w + 12w3)V2 + 3S−xx − 4cS−x − 3wxxx + 4cwxx
+3bwx − c2wx + 18w2wx − ac − bcw − 3bS− + c2S− − 2cw3

+6S−S+ − 18S−w2 = 0. (40)

Hence our system will be equivalent to the set of two equations, (38) and (40). (In fact, we have
calculated the special typeS-polynomial using the LEX order. In so doing, one of the initial
equations (37) can be finally removed as a so-called superfluous polynomial.) The process
could, of course, be continued to derive the triangular system, however, this is already enough.

Let us look to (40) attentively. In view of the aforementioned, in particular the requirements
(35) and (36), the coefficients atV 2

1 andV 2
2 must be equal to zero or

S− = 1
2(3wx − cw) S+ = − 1

6(3b + c2 − 18w2). (41)

After that (40) takes the form

(−9wxx + 9cwx + 36a − 18bc + 36bw − 4c3 + 6c2w + 72w3)V1

+(−9wxx + 9cwx + 36a + 18bc + 36bw + 4c3 + 6c2w + 72w3)V2

+3(3wxxx − 7cwxx − 12bwx + 2c2wx − 72w2wx

−2ac + 4bcw + 32cw3) = 0

so that further simplifications are possible, and we should already equate to zero the coefficients
atV1, V2 and then the rest as well. As a result, one has the following equation (v = w/2):

cvx − vxx + 2v3 +
(
4b + 2

3c
2
)
v +

(
8a − 4bc − 8

9c
3
) = 0 (42)

provided that

c = 0 or a = 9b + 2c2 = 0. (43)

Another equation (37) from the system defines the constraint toV1 andV2,

G = −216V 2
1 V2 + 36(3v − c)V 2

1 + 216V1V
2
2 − 216vV1V2

+3(3cv + 27v2 − 9vx + 18b + 2c2)V1 + 36(c + 3v)V 2
2

+3(3cv − 27v2 − 9vx − 18b − 2c2)V2

−9cvx + 108a − 36bc + 54bv − 8c3 + 15c2v + 27v3 = 0 (44)
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such thatE and dE/dx can be rewritten as

E = 1
9G

d

dx
E = 1

27(c − 6V1− 6V2)G.

In summary we have obtained the one-parametric mapping

u = V1− V2 + 1
2v(x) (45)

between equations (32) and (42) of the same form. In so doing, taking into account relations
(39) and (41), the functionsV1 andV2 are determined by the equations

d

dx
V1,2 = −V 2

1,2 − 1
24

(±9vx − 6b − 2c2 ∓ 3cv − 9v2
)

(46)

with the additional constraints (44) on them and (43) on the parameters.
The relation (45) betweenu and v represents the mapping of (32) into itself (for the

latest choice of the parameters in (43) the equations for them coincide, and in the first case
equation (42) is reduced exactly to the form (32) by the stretchingv → 2v, x → ±x/2) and
can be applied for multiplication of already known solutions.

For instance, starting with the trivial solutionv0 = constant such that 2v3
0 +4bv0 +8a = 0

for the casec = 0, one has from (46)

V1 = k

2

(
ekx+ϕ − 1

ekx+ϕ + 1

)
V2 = k

2

[
(v0 + k)ekx+ϕ − (v0 − k)
(v0 + k)ekx+ϕ + (v0 − k)

]
ϕ = constant k2 = b + 3

2v
2
0 6= 0

or

V1 = 1

x + ϕ

V2 = 1

x + ϕ + 2/v0

ϕ = constant b + 3
2v

2
0 = 0

with regard to the constraint (44) for them. The resulting expression foru is as follows:

u = −2kekx+ϕ(
ekx+ϕ + 1

)[
(v0 + k)ekx+ϕ + (v0 − k)

] +
v0

2

or, respectively,

u = 2/v0

(x + ϕ) (x + ϕ + 2/v0)
+
v0

2
.

In a similar manner, starting fromv0 = 0 for a = 0, b = −2c2/9, one obtains the
expressions

V1 = 1
6c tanh

(
1
6cx + ϕ

)
V2 = − 1

6c

ϕ = constant c 6= 0
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and, as a result, the simple solution

u = c

3
(
1 + e−cx/3−ϕ

) .
Further application of (45) to the solution sought leads to their phase shift. By this means

in these concrete cases the mapping amounts to an addition of some fixed solution to an initial
one. While it itself is not limited by some subclasses of the general solutions to (32) so that
u from (45) would satisfy a fixed (not dependent on another, arbitrary, solutionv) ODE of a
lesser (here first) order than (32). In view of (42), (44)–(46) one has the relations for its first
derivative

16u2
x − 32au− 16bu2 − 16u4 − v2

x + 16av + 4bv2 + v4 = 0 (47)

16
(
9u2

x − 6cuux + c2u2 − 9u4
)− 9v2

x + 6cvvx − c2v2 + 9v4 = 0 (48)

respectively, for both cases. (We can, for example, expressV1 or V2 in terms of another
singular function from (45) and then find the resultant for (44) and its derivative or vice versa
differentiate (45) to introduceux and solve these two relations to eliminateV1 andV2 from
(44).)

The first of them, equation (47), can be represented as

16u2
x − 32au− 16bu2 − 16u4 = v2

x − 16av − 4bv2 − v4 = λ
λ = constant

and the action of the mapping affects the phase parameter. The non-trivial cases, when the
mappings from the degenerate solutions with the phaseϕ = ∞ take place and we obtain the
new solutions, have been presented above. The second case (48) is more complicated because

16
(
9u2

x − 6cuux + c2u2 − 9u4
) = 9v2

x − 6cvvx + c2v2 − 9v4 = λe4cx/3

λ = constant c 6= 0

here and is not reduced to a trivial transformation. (The case corresponding to the phase
transformation (λ = 0) and including the action to the degenerate solution has been
demonstrated above.)

Before proceeding further, it should be mentioned that in the example just considered the
resultant ofE and dE/dx presents the polynomial of the sixth order inV1 (or V2), involving
from 4183 terms! And to give rise to the same results it would be necessary to solve the
related overdetermined set of the huge differential equations forS1, S2 andw. That is very
hard even applying the special theory and computer methods for such systems [26, 27]. While
above, effectively using the nature of the functionsV1 andV2, for the same purposes, we have
practically dealt with only several simple enough algebraic relations.

However, in so doing, the constraint sought has been represented by the second-order
polynomial, so that it has already been obtained in an early stage. In other cases it may be
necessary to investigate polynomials of lower orders, and further calculations may appear
to be noticeably complicated. While it is obvious that, on the one hand, possible orders of
similar polynomials are fixed by the order ofE, and, on the other hand, only some of their
configurations with respect toVi are compatible with the differential equations (2) for singular
functions. As a result, if needed we could simply determine such possible configurations for an
equation of interest first and then start our investigation by substituting any of them forE and
directly equating coefficients for the products ofVi to zero. Although the first step nevertheless
demands the use of the Gröbner basis technique, it is limited by the only reduction for each
configuration. In this manner, in some cases calculations can be split beforehand into several
branches, and superfluous ones could be avoided as a result. In appendix A such configurations
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for (37) are presented together with necessary details as an example. In that case, however, our
direct strategy ‘from top to bottom’ is the most effective and economic, but for other equations
the reverse may appear to be more reasonable.

Example 5. The obvious question arises of whether the previous use of the opposite branches
is always essential for success? To answer this question consider briefly another example with
the following ODE:

uuxx − αu2
x + a0 + a1uux + a2u

2 + a3u + a4 = 0 α, ai = constant. (49)

A number of dissipative systems are reduced to the equations of this family [34, 35]. For
α = {2, 3

2,
4
3, . . .} and anyai it obviously possesses the Painlevé property. But to derive

something concrete for (49) is not so obvious. Its full investigation within the approach with
several manifolds is highly complicated as well because of its nonlinearity, and because already
first steps lead to overdetermined systems of differential equations to unknown functions in
the related singular expansions andSj . However, even considering the simplest possible
configurations (A1) for the equationE = 0 obtained from (49) after the substitution of the
simplest expansion(α = 2)

u = w1V1 +w2V2 +w(x) w1, w2 = constant (50)

and equating the coefficients in the powersV 3
1,2,V 2

1,2,V1,2 and the free coefficient there to zero,
one has

a = b = 0

c = 1
4a2

w = 0

S1 = S2 = − 1
2a2

with the additional relations forw1, w2 andai

(w1 +w2)
2a2

2 + 4a4 = 0

3a2(w1 +w2)− 2a0 = 0

a1 = a3 = 0.

So that (50) corresponds to the following general solution:

u = a0

3
√
a2

tanh
(

1
2

√
a2x + c1

)
+ c2 cosh

(√
a2x + 2c1

)
c1,2 = constant

to (49) ata1,3 = a2
0 + 9a4 = 0.

By this means the consideration of the two arbitrary branches in the singular expansion
has been essential here.

There are a number of problems which are difficult for the traditional singular manifold
method. Among them are systems with perturbations and uncoupling of sets of differential
equations. Really, in the former case the postulate ‘near singularities’, as such, renders accurate
consideration of a small parameter doubtful, and in the latter the use of only one singular
function beforehand assumes a linkage of the functions sought.
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Example 6. Consider now the following system of ODEs with a small parameter and
perturbations of the most general type quadratic with respect to each of the functions

u1x = −u2
1 − 1

2a0 + ε
[(
a1 + a2u1 + a3u

2
1

)
u2

2 +
(
a4 + a5u1 + a6u

2
1

)
u2
]

(51)

u2x = −u2
2 − 1

2b0 + ε
[(
b1 + b2u2 + b3u

2
2

)
u2

1 +
(
b4 + b5u2 + b6u

2
2

)
u1
]

(52)

|ε| � 1 ai, bi = constant i = 0, 6.

Other than their important role in chemical kinetics, when the variables correspond to various
species, and other fields of physics (e.g. turbulence and plasma physics), similar types of
systems arise in the study of dynamics of ensembles from weakly interacting solitonic waves
(so-called soliton gases and soliton grids) in integrable and, especially, non-integrable models.
At ε = 0, we have description (x-part) for two such non-interacting solutions typical within
the framework of the singular manifold technique, and perturbations appear from nonlinear
terms if one admits wave overlapping.

It is known that such interacting ensembles assume various dynamics, from regular
behaviour up to formations of bound states and chaotic motion even with two or three
components [36–39].

Although to derive a set of equations for corrections within the framework of the direct
perturbation theory is very simple, to solve such equations or even to reveal basic features of
the solutions is very difficult even in the simplest cases. While it is known that some such
systems or single equations, both ordinary and partial differential ones, can be transformed to
an unperturbed or simpler form [40–42]. Let us investigate (51) and (52) from this viewpoint
confining ourselves to the first order of the perturbation theory and use the related two-manifold
expansions

u1 = V1 + ε
(
w11V1 +w12V2 +w10

)
+ o(ε) (53)

u2 = V2 + ε
(
w21V1 +w22V2 +w20

)
+ o(ε) (54)

wij = wij (x) i = {1, 2} j = 0, 2.

(The zero-order part is obvious, and the first order one is dictated by the balance between the
dominant terms from the unperturbed part and perturbation.) The list (A1)–(A3) exhausts all
permutable configurations for the resulting equations:

2a3V
2
1 V

2
2 + 2a6V

2
1 V2 − 2w11V

2
1 + 2a2V1V

2
2 + 2(a5− 2w12)V1V2

−2V1(w11x + 2w10) + 2(a1 +w12)V
2
2 + 2V2(a4 − w12x)

−2w10x + a0w11 + b0w12 + S11 = 0 (55)

2b3V
2
1 V

2
2 + 2b2V

2
1 V2 + 2(b1 +w21)V

2
1 + 2b6V1V

2
2

+2(b5− 2w21)V1V2 + 2V1(b4 − w21x)− 2w22V
2
2 − 2V2(w22x + 2w20)

−2w20x + a0w21 + b0w22 + S21 = 0. (56)

Starting with the simplest of them (A1), one has further from (55) and (56)

w11 = (a3a + a6)a

w12 = −(a1 + a2b + a3b
2)

w10 = 1
4

[
4a3a

3 + 2(a2 + a6)a
2 + 4a3ab

2 + 4a2ab + 8a3ac

+2(2a1 + a3b0 + a5)a + 4a6c + a6b0
]

w21 = −(b3a
2 + b2a + b1)

w22 = (b3b + b6)b
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w20 = 1
4

[
4b3a

2b + 4b2ab + 4b3b
3 + 2(b2 + b6)b

2 + 8b3bc

+2(a0b3 + 2b1 + b5)b + 4b6c + a0b6
]

and forS1 andS2

S1 = a0 + 1
2ε
[−12a3a

4 − 4(a2 + a6)a
3− 36a3a

2c

−2(a0a3 + 2a1 + 4a3b0 + a5)a
2 + 4(a2 + a6)ab

2 − 24a3abc

+4(2a1 + a5− a0a3)ab − 12(a2 + a6)ac

−2(a0a2 + a0a6 + a2b0 + a6b0)a − 12a3b
2c − 12(a2 + a6)bc

−12a3c
2 − 6(2a1 + a3b0 + a5)c − b0(a3b0 + a5)

]
S2 = b0 + 1

2ε
[
4(b2 + b6)a

2b − 12b3a
2c − 24b3abc

+4(2b1 + b5− b0b3)ab − 12(b2 + b6)ac − 12b3b
4 − 4(b2 + b6)b

3

−36b3b
2c − 2(4a0b3 + b0b3 + 2b1 + b5)b

2 − 12(b2 + b6)bc

−2(a0b2 + a0b6 + b0b2 + b0b6)b − 12b3c
2 − 6(a0b3 + 2b1 + b5)c

−a0(a0b3 + b5)
]

together with the following restrictions for the functionsa andb in (A1):

2(b2 + b6)a
2 + 2(2b1 + b5− b0b3)a + 2b4 − b0b3 = 0 (57)

2(a2 + a6)b
2 + 2(2a1 + a5− a0a3)b + 2a4 − a0a3 = 0. (58)

If a or b are fixed constants then (53) and (54) in view of (A4)–(A6) would describe just
a particular solution. So that we should set

a6 = −a2 a5 = a0a3− 2a1 a4 = 1
2a0a2

b6 = −b2 b5 = b0b3− 2b1 b4 = 1
2b0b2

here for the general solution. By this means the functionsa, b andc are arbitrary as yet, and
we will try to evolve the case when in our approximation (51) and (52) can be reduced by (53)
and (54) to their unperturbed form and demand additionally that

S1, S2 = constant.

This problem is again reduced to the calculation of the set of differential consequences for
these two equations (57) and (58), and finding the invariant constraints not restrictinga, b, c
to fixed constants. All our previous techniques are applied for this, and one has the following
conditions after the tiresome but straightforward algebra

c = −a2 − 1
2b0

b = −a
b0 = a0

and consequently

V1V2 + (V2 − V1)a + 1
2a0 = 0

and, as a result, foru1 andu2

u1 = V1 + ε

[
a3

(
V1V2 + 1

2a0
)

V1− V2
− a2

(
V1V2 + 1

2a0
)− a1V2 + 1

4a0a2

]
+ o(ε)

u2 = V2 − ε
[
b3

(
V1V2 + 1

2a0
)

V1− V2
− b2

(
V1V2 + 1

2a0
)− b1V1 + 1

4a0b2

]
+ o(ε)
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provided that

S1 = a0 + εa0
(

1
2a0a3 + a1

)
+ o(ε)

S2 = a0 + εa0
(

1
2a0b3 + b1

)
+ o(ε)

or

V1 =
√
− 1

2S1 tanh
(√
− 1

2S1x + ϕ1

)
+ o(ε)

V2 =
√
− 1

2S2 tanh
(√
− 1

2S2x + ϕ2

)
+ o(ε)

ϕ1, ϕ2 = constant.

For arbitrary values ofa0 andb0 other simplifications can be obtained. For instance, the
trivial case with the independent manifoldsc = 0, a = V2, b = V1 leads to the following
expressions forS1, S2 and the solutionsu1, u2:

S1 = a0 − ε
[
6a3V

4
2 + 2a3(a0 + 2b0)V

2
2 + 1

2b0(a0a3 + a3b0 − 2a1)
]

+ o(ε)

S2 = b0 − ε
[
6b3V

4
1 + 2b3(b0 + 2a0)V

2
1 + 1

2a0(a0b3 + b3b0 − 2b1)
]

+ o(ε)

u1 = V1 + ε
[
a3V1V

2
2 − a2V1V2 + a3V

3
2 + 2(a0a3 + a3b0 − 2a1)V2 − 1

4a2b0
]

+ o(ε)

u2 = V2 + ε
[
b3V

2
1 V2 − b2V1V2 + b3V

3
1 + 2(a0b3 + b3b0 − 2b1)V1− 1

4b2a0
]

+ o(ε).

In other words, the interactions can be reduced to the weak wavenumber modulation determined
by another component only.

The analogous analysis for other configurations (A2) and (A3) also gives rise to positive
results, however, they really add nothing new to the results just found.

The approach presented above can be applied with success to a number of other nonlinear
ordinary and partial differential equations (one will need to consider∂E/∂x and∂E/∂t in the
latter case). Some time-dependent solutions of the initial equation (33) could be obtained in
this manner.

5. Some remarks and further perspectives

In the previous sections it has been demonstrated that some problems arising in modern
applications of the singular manifold method can be solved rigorously if one treats this
technique more attentively. A critical reader, however, may have some questions: series
of what form could be used in light of the preceding? Could one introduce terms likeV

n1
1 V

n2
2

(n1, n2 ∈ N) there? What can the maximal order of such series be with respect toVi if the
related coefficient depends on other functionsVj (j 6= i)? How many manifolds are needed
to describe the general solution? There is no constructive answer within the framework of the
singular analysis. Moreover, the technique itself could be considered from another point of
view.

Assume that there is a setM of functions{. . . , ei(x, t; . . . , τk, . . .), . . .} finite or infinite
such that

∂ei

∂x
=
∑
l

ail(x, t)el (59)

∂ei

∂t
=
∑
l

bil(x, t)el (60)

eiej =
∑
l

cij l(x, t)el. (61)
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The variablesτk correspond to the arbitrary parameters associated with the differential
equations (59) and (60); andeil , bil , cij l satisfy the compatibility conditions for (59)–(61).
Then a polynomial nonlinear differential operatorE(x, t, u, ux, ut , . . .)maps the linear space

L{. . . , ei, . . .} =
{∑

j

wj (x, t)ej (x, t; . . . , τk, . . .)
}

into itself. Let there exist finite subsetsW ,WE ⊂ M with the related linear subspacesLW and
LWE

such that

E[LW ] ⊆ LWE
.

If one inserts an elementu ∈ LW into the equationE = 0 and separates the variables, one has
an overdetermined but compatible system of equations towj(x, t), then such sets can be used
for finding solutions of this equation. The fact that for special types of matrices{aij }, {bij }
and{cijk} an infinite linear system (59) and (60) can be a representation of a finite-dimensional
dynamic system [43, 44]. (For instance, the Riccati equations (2) and (3) correspond to the set
{1, V , V 2, . . .}.) It is clear now that the above-mentioned constraints correspond to the cases
when one or several vectors (functions)ei appear to be linearly dependent on others. In terms
of nonlinear systems they correspond to special integrals or invariant manifolds [45].

All of these are not new in effect. First, the analogous concept, namely linear subspaces
or sets on linear subspaces invariant under a nonlinear differential operator [46, 47], has been
applied with success and has developed quickly for ten years. (See [48] for details on finding
the form of such sets.) Second, in all of our examples one has finally been led to such systems
taking into account other functions exceptV1,2 in those singular expansions.

In fact it is not so tedious to find a suitable system for a differential equation of interest.
For example, for the travelling wave reduction

−cux + uxx + u2 − u = 0 (62)

of Fisher’s equation [49], the auto-transformation can be formally constructed (see appendix B)

u = −6(V1− V2)
2 + u′

and (we have seta3 = b3 = V3(x) in (B1) and (B3), (B4))

d

dx
V1,2 = −V 2

1,2 + 5V1V2 + 1
5(c + 3V3)V1,2 + V2,1V3

d

dx
V3 = 4

5V
2
3 + 1

5cV3 + 1
20(50u′ − 6c2 − 25).

However, in so doing, the main problem is whether these auxiliary equations themselves can
be integrated? While in [50] it was shown that such systems could be highly important from
another viewpoint for understanding of the behaviour of nonlinear waves in PDEs, because
special superposition properties and solitonic solutions may be associated with them.

In conclusion, it should be pointed out once more that the availability of the parameters
τk is essential for all the aforementioned, because this leads to a separation of the functions
ei and coefficients. Also, in principle, proceeding in the manner demonstrated in section 3,
it is possible to obtain some formulae for any ansatz. However, if such a substitution is not
justified theoretically, its usefulness depends only on the luck of a researcher and the particular
case. Singular manifold equations themselves can be useless. And even for the well known
integrable NPDEs additional investigations are frequently necessary. For example, for the
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Burgers equation{ut + uux − uxx = 0; u = −2V + C} one has the system forS andC from
the singular manifold equation

Ct − 2Cxx +CCx − Sx = 0 (63)

and (4). The suitable equation

Ct + λC + 2CCx − Cxx = 0 λ = constant

is found here among the intermediate integrals of the system (4) and (63).
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Appendix A

In accordance with the maximum order of (37) with respect to each singular functionV1 and
V2, only the following configurations (substitutions) could be permissible for it:

−V1V2 + aV1 + bV2 − ab + c = 0 (A1)

V 2
1 V2 + bV1V

2
2 + cV 2

1 + dV 2
2 + fV1V2 + gV1 + hV2 + q = 0. (A2)

Herea, b, c, d, f , g, h andq are some new functions unknown beforehand. (One more
second-order configuration

−V 2
1 V

2
2 + aV 2

1 V2 + bV1V
2
2 + cV 2

1 + dV 2
2 + fV1V2 + gV1 + hV2 + q = 0 (A3)

is impossible owing to the absence of the suitable leading termV 2
1 V

2
2 in (37).) In (A1) the

new functionsa, b andc have been introduced so that forc = 0 one has the trivial case with
the independent manifolds

(V1− b)(V2 − a) = 0.

To derive the relations to the coefficients in (A1) and (A2), it is necessary to construct the
differential consequenceGx = 0 and exclude the leading terms withV1 andV2 taking into
account the constraintG = 0 itself. Then, equating the coefficients at all productsV

n1
1 V

n2
2 to

zero, one will obtain the differential equations and, maybe, additional algebraic restrictions to
the above functions. By this means they should satisfy the following relations:

ax = −a2 − c − 1
2S2 (A4)

bx = −b2 − c − 1
2S1 (A5)

cx = −2c(a + b) (A6)

and

bx = −b2c + bc + 2bf − 2d

cx = −bc2 + c2 + cf − g + 1
2S2

dx = −bcd + bh + 1
2bS1 + cd + df

fx = −bcf + bg + bS2 + cf + f 2 − g − 2h + S1

gx = −bcg + cg + cS1 + fg + 1
2f S2 − 2q

hx = −bch + bq + ch + dS2 + f h + 1
2f S1− q
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qx = −bcq + cq + f q + 1
2gS1 + hS2

b(b + 1) = d(b + 1) = 0

for (A1) and (A2), respectively.
Analogously, for PDEsGt together withGx should be calculated, and thet-parts should

be found as well. For example, for (A1) thet-part is of the form

at = C2a
2 − C2xa +C1c + 1

2(C2xx +C2S2)

bt = C1b
2 − C1xb +C2c + 1

2(C1xx +C1S1)

ct = c
(
2C2a + 2C1b − C1x − C2x

)
.

(A7)

Obviously, equations (A4)–(A6) and (A7) are compatible when (4) is satisfied.

Appendix B

One will try to construct the analogue of a WTC truncated expansion for (62) using instead of
the Riccati equations (2), the following system:

V1x = −V 2
1 + a1(x)V1V2 + a2(x)V1 + a3(x)V2

V2x = −V 2
2 + b1(x)V1V2 + b2(x)V2 + b3(x)V1.

(B1)

For the constant parameters this system was investigated in [51] with the goal of a complete
classification of two-dimensional quadratic systems from the Painlevé analysis viewpoint. The
related series with respect toV1 andV2 is of the form

u = w1(x)V
2
1 +w2(x)V1V2 +w3(x)V

2
2 +w4(x)V1 +w5(x)V2 +w(x) (B2)

according to the dominant behaviour of the functionsu in (62) andV1 andV2 in (B1). After
inserting (B2) into the equation under consideration, the leading orders (the coefficient for the
productsV 4

1 , V 3
1 V2, V 2

1 V
2
2 , V1V

3
2 andV 4

2 ) give the set of the algebraic relations

w1(w1 + 6) = 0

2a1b1w1− 10a1w1 + b2
1w2 − 3b1w2 + 2w1w2 + 2w2 = 0

4a2
1w1 + 4a1b1w2 − 2a1w1− 3a1w2 + 4b2

1w3− 3b1w2 − 2b1w3 + 2w1w3 +w2
2 + 2w2 = 0

a2
1w2 + 2a1b1w3− 3a1w2 − 10b1w3 + 2w2w3 + 2w2 = 0

w3(w3 + 6) = 0.

These relations can be solved, for example, via the Gröbner bases approach, so that, in
particular, the following non-trivial sets forw1, w2 andw3, the coefficients of the dominant
terms in (B2), are determined:

(w1, w2, w3) = {(0;−6,−1; 0), (0; 0,−24, 3,−6, 2, 6, 8;−6),

(−6;−84, 12, 24, 20, 15,−12, 6;−6)}.
One choice, namely(w1, w2, w3) = (−6, 12,−6), leads us to a positive result for any value
of c from (62). More precisely, in this case the above system also gives

a1 = b1 = 5
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while the algebraic again equations in the next order (the coefficients atV 3
1 , V 2

1 V2, V1V
2
2 and

V 3
2 ) give

w4,5 = ± 12
5 (b3− a3)

a2 = 1
5(c − 2a3 + 5b3)

b2 = 1
5(c − 2b3 + 5a3).

After that the rest of the orders already determine the differential equations fora3 andb3

a3x = 1
20

(
8a2

3 − 4a3b3 + 4ca3 + 12b2
3 − 6c2 + 50w − 25

)
(B3)

b3x = 1
20

(
8b2

3 − 4a3b3 + 4cb3 + 12a2
3 − 6c2 + 50w − 25

)
(B4)

together with the equation tow, which is obviously identical to the original one foru. Note here
that since the system (B3) and (B4) is symmetrical, we could seta3 = b3 there for simplicity.
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